翻訳と辞書
Words near each other
・ Hestiochora xanthocoma
・ Hestlægerhøi
・ Hestmona
・ Hestnes
・ Heston
・ Heston (disambiguation)
・ Heston (name)
・ Heston Aerodrome
・ Heston Aircraft Company
・ Heston and Isleworth
・ Heston and Isleworth (UK Parliament constituency)
・ Heston Blumenthal
・ Heston Carter
・ Heston Community School
・ Heston JC.6
Heston model
・ Heston Phoenix
・ Heston Rovers F.C.
・ Heston services
・ Heston T.1/37
・ Heston's Fantastical Food
・ Heston's Feasts
・ Hestor L. Stevens
・ Hestra
・ Hestra, Gislaved
・ Hestra, Ydre
・ Hestrie Cloete
・ Hestroff
・ Hestrud
・ Hestrus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Heston model : ウィキペディア英語版
Heston model
In finance, the Heston model, named after Steven Heston, is a mathematical model describing the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
== Basic Heston model ==

The basic Heston model assumes that ''St'', the price of the asset, is determined by a stochastic process:
:
dS_t = \mu S_t\,dt + \sqrt S_t\,dW^S_t \,

where \nu_t, the instantaneous variance, is a CIR process:
:
d\nu_t = \kappa(\theta - \nu_t)\,dt + \xi \sqrt\,dW^_t \,

and are Wiener processes (i.e., random walks) with correlation ρ, or equivalently, with covariance ρ dt.
The parameters in the above equations represent the following:
* μ is the rate of return of the asset.
* θ is the long variance, or long run average price variance; as ''t'' tends to infinity, the expected value of ν''t'' tends to θ.
* κ is the rate at which ν''t'' reverts to θ.
* ξ is the volatility of the volatility, or vol of vol, and determines the variance of ν''t''.
If the parameters obey the following condition (known as the Feller condition) then the process \nu_t is strictly positive
:
2 \kappa \theta > \xi^2 \, .


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heston model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.